Stefanie Molin
Stefanie Molin is a software engineer at Bloomberg in New York City, where she tackles tough problems in information security, particularly those revolving around data wrangling/visualization, building tools for gathering data, and knowledge sharing. She is also a core developer of numpydoc and the author of “Hands-On Data Analysis with Pandas: A Python data science handbook for data collection, wrangling, analysis, and visualization,” which is currently in its second edition and has been translated into Korean and Chinese. She holds a bachelor’s of science degree in operations research from Columbia University's Fu Foundation School of Engineering and Applied Science, as well as a master’s degree in computer science, with a specialization in machine learning, from Georgia Tech. In her free time, she enjoys traveling the world, inventing new recipes, and learning new languages spoken among both people and computers.

Sessions
Working with data can be challenging: it often doesn’t come in the best format for analysis, and understanding it well enough to extract insights requires both time and the skills to filter, aggregate, reshape, and visualize it. This session will equip you with the knowledge you need to effectively use pandas – a powerful library for data analysis in Python – to make this process easier.
Pandas makes it possible to work with tabular data and perform all parts of the analysis from collection and manipulation through aggregation and visualization. While most of this session focuses on pandas, during our discussion of visualization, we will also introduce at a high level Matplotlib (the library that pandas uses for its visualization features, which when used directly makes it possible to create custom layouts, add annotations, etc.) and Seaborn (another plotting library, which features additional plot types and the ability to visualize long-format data).
Maintaining code quality can be challenging, no matter the size of your project or number of contributors. Different team members may have different opinions on code styling and preferences for code structure, while solo contributors might find themselves spending a considerable amount of time making sure the code conforms to accepted conventions. However, manually inspecting and fixing issues in files is both tedious and error-prone. As such, computers are much more suited to this task than humans. Pre-commit hooks are a great way to have a computer handle this for you.
Pre-commit hooks are code checks that run whenever you attempt to commit your changes with Git. They can detect and, in some cases, automatically correct code-quality issues before they make it to your codebase. In this tutorial, you will learn how to install and configure pre-commit hooks for your repository to ensure that only code that passes your checks makes it into your code base. We will also explore how to build custom pre-commit hooks for novel use cases.