SciPy 2024

Pavithra Eswaramoorthy

Pavithra Eswaramoorthy is a Developer Advocate at Quansight, where she works to improve the developer experience and community engagement for several open source projects in the PyData community. Currently, she contributed to the Bokeh visualization library, and contributes to the Nebari (adjacent to the Jupyter community), conda-store (part of the conda ecosystem), and Ragna (a RAG orchestration framework) projects. Pavithra has been involved in the open source community for over 5 years, notable as a maintainer of the Dask library and an administrator for Wikimedia’s OSS programs. In her spare time, she enjoys a good book and hot coffee. :)

The speaker's profile picture

Sessions

07-08
13:30
240min
Interactive data visualizations with Bokeh (in 2024)
Timo Metzger, Bryan Van de Ven, Pavithra Eswaramoorthy

Bokeh is a library for interactive data visualization. You can use it with Jupyter Notebooks or create standalone web applications, all using Python. This tutorial is a thorough guide to Bokeh and its most recent new features. We start with a basic line plot and, step-by-step, make our way to creating a dashboard web application with several interacting components. This tutorial will be helpful for scientists who are looking to level up their analysis and presentations, and tool developers interested in adding custom plotting functionally or dashboards.

Tutorials
Room 316
07-09
08:00
240min
From RAGs to riches: Build an AI document inquiry web-app
Pavithra Eswaramoorthy, Dharhas Pothina, Andrew Huang

As we descend from the peak of the hype cycle around Large Language Models (LLMs), chat-based document inquiry systems have emerged as a high-value practical use case. Retrieval-Augmented Generation (RAG) is a technique to share relevant context and external information (retrieved from vector storage) to LLMs, thus making them more powerful and accurate.

In this hands-on tutorial, we’ll dive into RAG by creating a personal chat app that accurately answers questions about your selected documents. We’ll use a new OSS project called Ragna that provides a friendly Python and REST API, designed for this particular case. We’ll test the effectiveness of different LLMs and vector databases, including an offline LLM (i.e., local LLM) running on GPUs on the cloud-machines provided to you. We'll then develop a web application that leverages the REST API, built with Panel–a powerful OSS Python application development framework.

Tutorials
Ballroom B/C
07-09
13:30
240min
Data of an Unusual Size (2024 edition): A practical guide to analysis and interactive visualization of massive datasets
Pavithra Eswaramoorthy, Dharhas Pothina

While most scientists aren't at the scale of black hole imaging research teams that analyze Petabytes of data every day, you can easily fall into a situation where your laptop doesn't have quite enough power to do the analytics you need.

In this hands-on tutorial, you will learn the fundamentals of analyzing massive datasets with real-world examples on actual powerful machines on a public cloud provided by the presenters – starting from how the data is stored and read, to how it is processed and visualized.

Tutorials
Ballroom A