SciPy 2024

Pawan Negi

Pawan Negi is a post-doctoral researcher at the Department of Applied
Mathematics, Illinois institute of Technology. He has been teaching
mathematics courses to undergraduate students since last year. He earned his
PhD at IIT Bombay. He has used automan extensively in his
research for many years.


Sessions

07-09
08:00
240min
Automate your research with automan
Prabhu Ramachandran, Pawan Negi

In research involving any kind of computer simulation, we often have to
execute several simulations that might become a part of the final manuscript.
It is found that automating these simulations and their post-processing
introduces significant personal benefit in the form of improving research
output and productivity. Automation makes it much easier to run large
parameter sweeps and studies and allows you to focus on the important
questions to ask rather than managing hundreds or thousands of simulations
manually. This takes the drudgery of data/file management out of your hands,
systematizes your research, and makes it possible to incrementally improve and
refine your work. The added nice benefit is that your research also becomes
much easier to reproduce.

Tutorials
Room 318
240min
Pythonic 3D visualization from small to large scale
Prabhu Ramachandran, Pawan Negi

In scientific research, visualization of data plays a pivotal role in
comprehending complex numerical simulations. Visual representations not
only aid in understanding simulation outputs but also prove invaluable
during the development and debugging phases of numerical algorithms, long
before reaching production stages.

In this tutorial, we adopt a pragmatic approach to visualization,
introducing attendees to two robust packages: Mayavi
(https://docs.enthought.com/mayavi/mayavi/) and ParaView
(https://www.paraview.org/). Mayavi, a versatile tool for scripting and
visualizing data from within Python, offers swift and efficient visualization
capabilities. On the other hand, ParaView excels in handling large-scale
datasets and visualizations at scale, making it indispensable for
researchers dealing with extensive data volumes.

Both Mayavi and ParaView leverage the Visualization Toolkit (VTK),
providing a common foundation. Our aim is to acquaint researchers with the
importance of rapid visualization and guide them on discerning when to
transition to a more potent tool like ParaView.

By mastering these visualization tools, researchers can unlock deeper
insights from their data, accelerate development cycles, and effectively
communicate their findings to broader audiences.

Tutorials